

AAMA 1503-09 THERMAL PERFORMANCE TEST REPORT

Rendered to:

UNITED STATES ALUMINUM

SERIES/MODEL: TT601 Top-Notch Ribbon Wall TYPE: Glazed Wall Systems (Site-built)

Summary of Results			
Thermal Transmittance (U-Factor) 0.44			
Condensation Resistance Factor - Frame (CRF_f) 72			
Condensation Resistance Factor - Glass (CRF_g) 65			
Unit Size	79" x 79" (2007 mm x 2007 mm)		
Layer 1	1/4" TiAC-36 (e=0.034*, #2)		
Gap 1	0.50" Gap, Aluminum Spacer (A1-D), 100% Air-Fill	led*	
Layer 2	1/4" Clear		

Reference must be made to Report No. B6096.02-201-46, dated 09/10/12 for complete test specimen description and data.

849 Western Avenue North St. Paul, MN 55117 phone: 651-636-3835 fax: 651-636-3843 www.archtest.com

AAMA 1503-09 THERMAL PERFORMANCE TEST REPORT

Rendered to:

UNITED STATES ALUMINUM 200 Singleton Drive Waxahachie, Texas 75165

Report Number:	B6096.02-201-46
Test Date:	07/20/12
Report Date:	09/10/12
Test Record Retention Date:	07/20/16

Test Sample Identification:

Series/Model: TT601 Top-Notch Ribbon Wall

Type: Glazed Wall Systems (Site-built)

Test Sample Submitted by: Client

Test Procedure: The condensation resistance factor (CRF) and thermal transmittance (U) were determined in accordance with AAMA 1503-09, *Voluntary Test Method for Thermal Transmittance and Condensation Resistance of Windows, Doors and Glazed Wall Sections*

1. Average warm side ambient temperature	69.80 F
2. Average cold side ambient temperature	-0.42 F

3. 15 mph dynamic wind applied to test specimen exterior.

4. $0.0" \pm 0.04"$ static pressure drop across specimen.

Test Results Summary:

1. Condensation resistance factor - Frame (CRF_f)	72
Condensation resistance factor - Glass (CRFg)	65
2. Thermal transmittance due to conduction (U)	0.44
(U-factors expressed in $Btu/hr \cdot ft^2 \cdot F$)	

849 Western Avenue North St. Paul, MN 55117 phone: 651-636-3835 fax: 651-636-3843 www.archtest.com

Test Sample Description:

CONSTRUCTION	Frame	
Size (in.)	79 x 79	
Daylight Opening (in.)	36 x 74-1/2 (x2)	
CORNERS	Square Cut	
Fasteners	Screws	
Sealant	No	
MATERIAL	AT (0.22")	
Color Exterior	White	
Finish Exterior	Paint	
Color Interior	White	
Finish Interior	Paint	
GLAZING METHOD	Channel	

Glazing Information:

Layer 1	1/4" TiAC-36 (e=0.034*, #2)
Gap 1	0.50" Gap, Aluminum Spacer (A1-D), 100% Air-Filled*
Layer 2	1/4" Clear
Gas Fill Method	N/A
Desiccant	Yes

*Stated per Client/Manufacturer NA Non-Applicable See Description Table Abbreviations

Test Sample Description: (Continued)

Туре	Quantity	Location
WEATHERSTRIP		
No weatherstrip		
HARDWARE		
No hardware		
DRAINAGE		
No drainage		

Test Duration:

- 1. The environmental systems were started at 12:00 hours, 07/19/12.
- 2. The thermal performance test results were derived from 01:27 hours, 07/20/12 to 05:27 hours, 07/20/12.

Condensation Resistance Factor (CRF):

The following information, condensed from the test data, was used to determine the condensation resistance factor:

T _h	=	Warm side ambient air temperature	69.80 F
T _c	=	Cold side ambient air temperature	-0.42 F
FT_p	=	Average of pre-specified frame temperatures (14)	50.39 F
FT_r	=	Average of roving thermocouples (4)	44.67 F
W	=	$[(FT_p - FT_r) / (FT_p - (T_c + 10))] \ge 0.40$	0.056
FT	=	$FT_p(1-W) + W (FT_r) = Frame Temperature$	50.07 F
GT	=	Glass Temperature	45.33 F
CRF_{g}	=	Condensation resistance factor – Glass	65
		$CRF_{g} = (GT - T_{c}) / (T_{h} - T_{c}) \times 100$	
$\mathrm{CRF}_{\mathrm{f}}$	=	Condensation resistance factor – Frame	72
		$CRF_{f} = (FT - T_{c}) / (T_{h} - T_{c}) \times 100$	

The CRF number was determined to be 65 (on the size as reported). When reviewing this test data, it should be noted that the glass temperature (GT) was colder than the frame temperature (FT) therefore controlling the CRF number. Refer to the 'CRF Report' page and the 'Thermocouple Location Diagram' page of this report.

Thermal Transmittance (U_c):

T_{h}	=	Average warm side ambient temperature	69.80 F
T_{c}	=	Average cold side ambient temperature	-0.42 F
Р	=	Static pressure difference across test specimen	0.00 psf
		15 mph dynamic perpendicular wind at exterior	
Nominal sample area		l sample area	43.34 ft ²
Total measured input to calorimeter1481.63 Btu/hr			1481.63 Btu/hr
Calorimeter correction		eter correction	127.78 Btu/hr
Net specimen heat loss		timen heat loss	1353.84 Btu/hr
U	=	Thermal Transmittance	0.44 Btu/hr·ft ² ·F

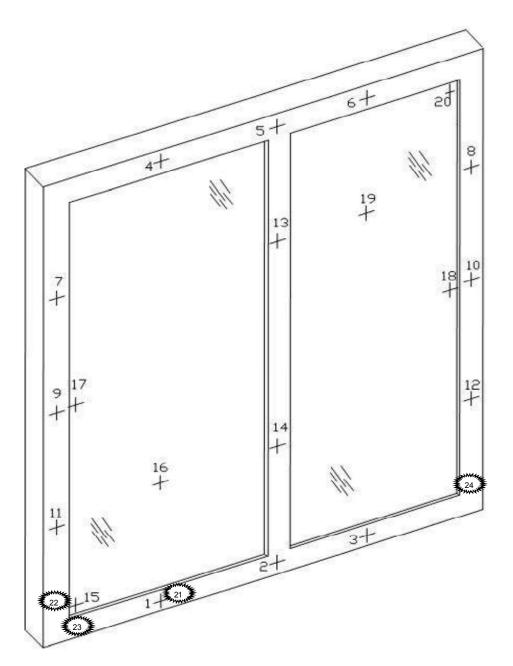
Glazing Deflection (in.):

	Left Glazing	Right Glazing
Edge Gap Width	0.50	0.50
Estimated center gap width upon receipt of specimen in laboratory (after stabilization)	0.50	0.38
Center gap width at laboratory ambient conditions on day of testing	0.50	0.38
Center gap width at test conditions	0.50	0.38

The sample was inspected for the formation of frost or condensation, which may influence the surface temperature measurements. The sample showed no evidence of condensation/frost at the conclusion of the test.

A calibration of the Architectural Testing Inc. 'thermal test chamber' (ICN N000235) in St. Paul, Minnesota was conducted in October 2011 in accordance with Architectural Testing Inc. calibration procedure.

Prior to testing the specimen was sealed with silicone on the interior side and checked for air infiltration per Section 9.3.4.


B6096.02-201-46 Page 6 of 9

CRF Report

Time:	03:27	03:57	04:27	04:57	05:27	AVERAGE
Pre-specif	ied Thermocou	uples - Frame				
1	45.98	45.96	45.98	46.00	45.98	45.98
2	46.96	46.94	46.95	46.96	46.99	46.96
3	47.08	47.07	47.10	47.07	47.08	47.08
4	52.73	52.72	52.74	52.75	52.77	52.74
5	53.58	53.59	53.58	53.60	53.61	53.59
6	50.26	50.26	50.27	50.30	50.29	50.28
7	51.54	51.52	51.54	51.57	51.57	51.55
8	50.75	50.75	50.77	50.80	50.78	50.77
9	50.33	50.28	50.23	50.36	50.36	50.31
10	50.33	50.28	50.23	50.36	50.36	50.31
11	49.28	49.27	49.26	49.28	49.32	49.28
12	48.47	48.46	48.47	48.49	48.52	48.48
13	55.26	55.27	55.27	55.28	55.28	55.27
14	52.81	52.82	52.82	52.83	52.84	52.82
FT_P	50.38	50.37	50.37	50.40	50.41	50.39
Pre-specif	ied Thermoco	uples - Glass				
15	48.46	48.45	48.47	48.56	48.59	48.50
16	53.10	53.13	53.11	53.15	53.16	53.13
17	40.04	40.01	40.04	40.07	40.05	40.04
18	41.07	41.07	41.08	41.08	41.10	41.08
19	55.50	55.44	55.49	55.52	55.49	55.49
20	33.70	33.71	33.77	33.79	33.75	33.74
GT	45.31	45.30	45.32	45.36	45.35	45.33
	t (Roving) The	_		16.00		
21	45.98	45.96	45.98	46.00	45.98	45.98
22	44.81	44.82	44.82	44.83	44.82	44.82
23	43.66	43.73	43.70	43.60	43.58	43.65
24	44.23	44.25	44.27	44.22	44.23	44.24
FT_R	44.67	44.69	44.69	44.66	44.65	44.67
W	0.06	0.06	0.06	0.06	0.06	0.06
FT	50.06	50.05	50.06	50.08	50.09	50.07
Warm Sid	le - Room Amb	-				
~	69.79	69.78	69.80	69.81	69.81	69.80
Cold Side	- Room Ambie	-		0.50	0.26	0.42
	-0.48	-0.43	-0.39	-0.50	-0.36	-0.43
CRF _f	72	72	72	72	72	72
CRF _g	65	65	65	65	65	65

Thermocouple Location Diagram

Cold	Point Locations
21 ×	21. 45.98
22 F	22. 44.82
23 F	23. 43.65
24 1	24. 44.24

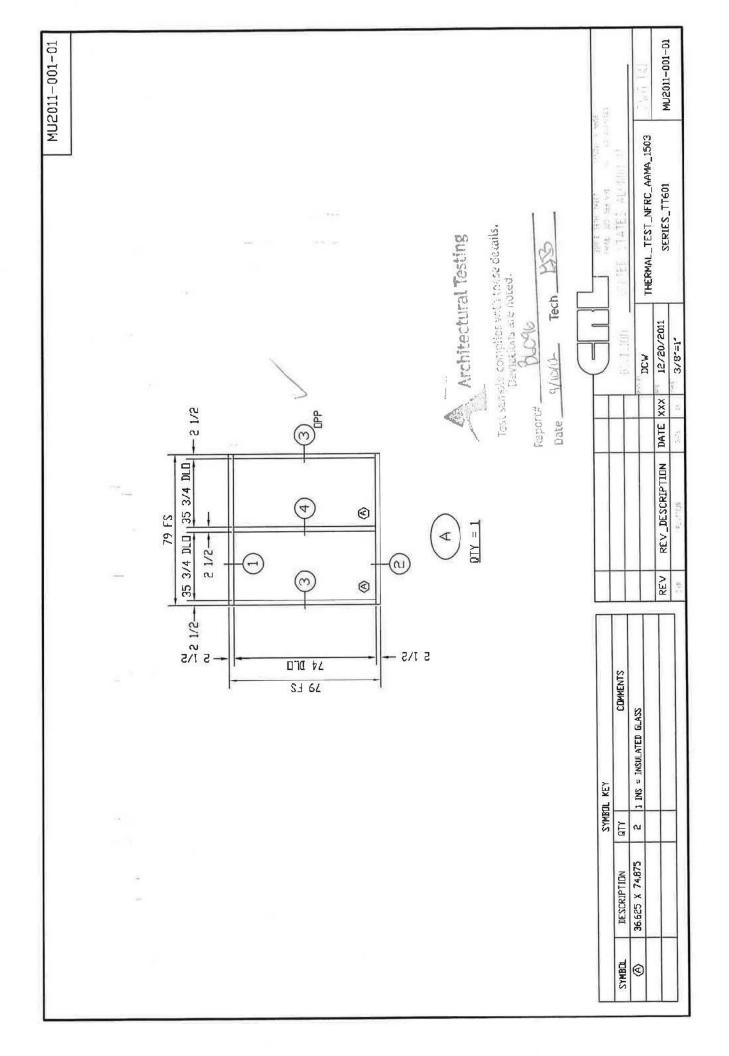
Detailed drawings, data sheets, representative samples of test specimens, a copy of this report, or other pertinent project documentation will be retained by Architectural Testing, Inc. for a period of four years from the original test date. At the end of this retention period such materials shall be discarded without notice and the service life of this report by Architectural Testing will expire. Results obtained are tested values and were secured by using the designated test methods. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the specimen(s) tested. This report may not be reproduced, except in full, without the written approval of Architectural Testing, Inc.

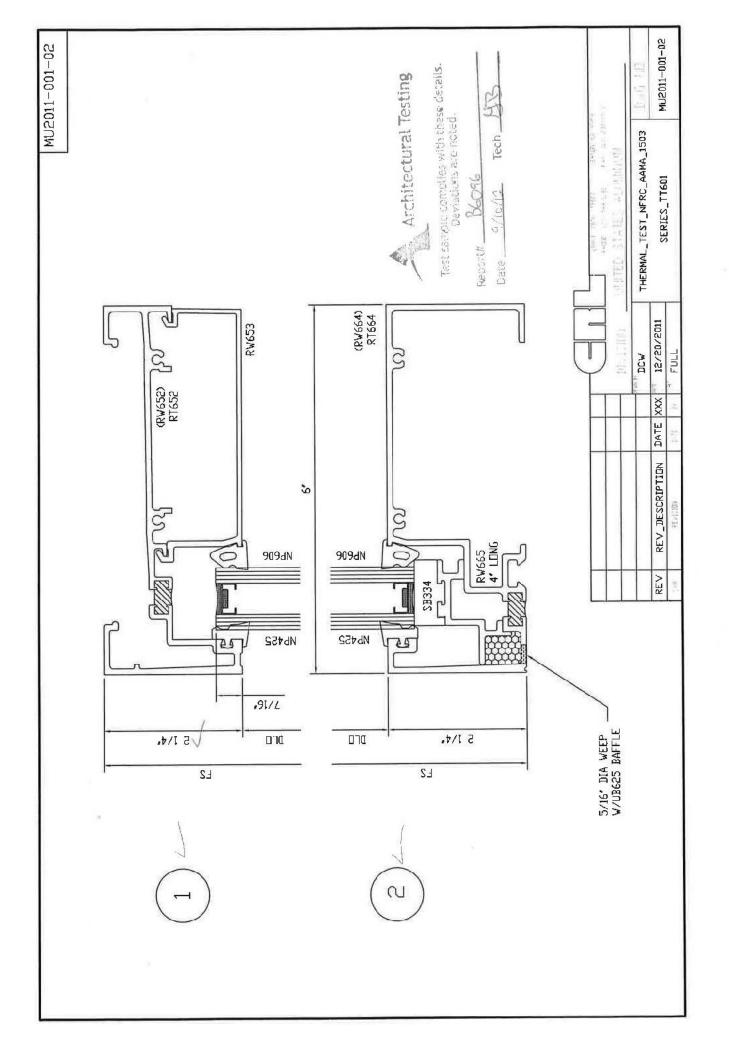
For ARCHITECTURAL TESTING, INC.

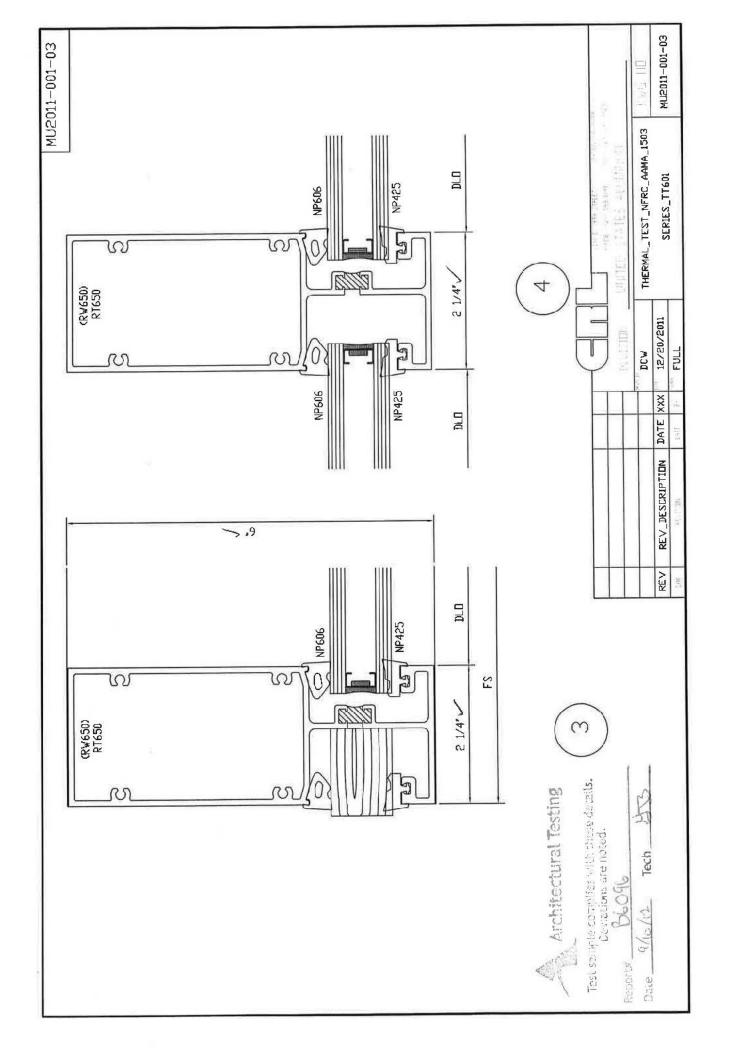
Michael D. Topitzhofer Technician

Michael P. Resech Senior Project Manager Individual-In-Responsible-Charge

MDT:mdt B6096.02-201-46


Attachments (pages): This report is complete only when all attachments listed are included.Appendix-A:Description Table Abbreviations (1)Appendix-B:Drawings (10)




Revision Log

Rev. #	Date	Page(s)	Revision(s)
02-R0	09/10/12	All	Original Report Issue. Work requested by Mr. Don Willard of United States Aluminum.

This report produced from controlled document template ATI 00025(c), revised 07/25/2011.

